Source code for adam.pytorch.computation_batch

# Copyright (C) Istituto Italiano di Tecnologia (IIT). All rights reserved.

import warnings

import numpy as np
import torch

from adam.core.constants import Representations
from adam.core.rbd_algorithms import RBDAlgorithms
from adam.pytorch.torch_like import SpatialMath
from adam.model import Model, build_model_factory
from adam.model.kindyn_mixin import KinDynFactoryMixin
from adam.core.array_api_math import spec_from_reference


[docs] class KinDynComputationsBatch(KinDynFactoryMixin): """ A PyTorch-based class for batch kinematic and dynamic computations on robotic systems. Provides efficient processing of robot kinematics and dynamics calculations using PyTorch tensors. Supports GPU acceleration and automatic differentiation for robotic applications. """ def __init__( self, urdfstring: str, joints_name_list: list = None, device: torch.device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ), dtype: torch.dtype = torch.float32, root_link: str = None, gravity: torch.Tensor = torch.as_tensor([0, 0, -9.80665, 0, 0, 0]), ) -> None: """ Args: urdfstring (str): path/string of a URDF or a MuJoCo MjModel. NOTE: The parameter name `urdfstring` is deprecated and will be renamed to `model` in a future release. joints_name_list (list): list of the actuated joints root_link (str, optional): Deprecated. The root link is automatically chosen as the link with no parent in the URDF. Defaults to None. """ ref = torch.tensor(0.0, dtype=dtype, device=device) math = SpatialMath(spec_from_reference(ref)) factory = build_model_factory(description=urdfstring, math=math) model = Model.build(factory=factory, joints_name_list=joints_name_list)
[docs] self.rbdalgos = RBDAlgorithms(model=model, math=math)
[docs] self.NDoF = self.rbdalgos.NDoF
[docs] self.g = gravity.to(dtype=dtype, device=device)
[docs] self.funcs = {}
if root_link is not None: warnings.warn( "The root_link argument is not used. The root link is automatically chosen as the link with no parent in the URDF", DeprecationWarning, stacklevel=2, )
[docs] def set_frame_velocity_representation( self, representation: Representations ) -> None: """Sets the representation of the velocity of the frames Args: representation (Representations): The representation of the velocity """ self.rbdalgos.set_frame_velocity_representation(representation)
[docs] def mass_matrix( self, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the Mass Matrix functions computed the CRBA Args: base_transform (torch.Tensor): The batch of homogenous transforms from base to world frame joint_positions (torch.Tensor): The batch of joints position Returns: M (torch.Tensor): The batch Mass Matrix """ M, _ = self.rbdalgos.crba(base_transform, joint_positions) return M.array
[docs] def centroidal_momentum_matrix( self, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the Centroidal Momentum Matrix functions computed the CRBA Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position Returns: Jcc (torch.Tensor): Centroidal Momentum matrix """ _, Jcm = self.rbdalgos.crba(base_transform, joint_positions) return Jcm.array
[docs] def relative_jacobian( self, frame: str, joint_positions: torch.Tensor ) -> torch.Tensor: return self.rbdalgos.relative_jacobian(frame, joint_positions).array
[docs] def jacobian_dot( self, frame: str, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, ) -> torch.Tensor: """Returns the Jacobian derivative relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position base_velocity (torch.Tensor): The base velocity joint_velocities (torch.Tensor): The joint velocities Returns: Jdot (torch.Tensor): The Jacobian derivative relative to the frame """ return self.rbdalgos.jacobian_dot( frame, base_transform, joint_positions, base_velocity, joint_velocities ).array
[docs] def forward_kinematics( self, frame: str, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Computes the forward kinematics between the root and the specified frame Args: frame (str): The frame to which the fk will be computed Returns: H (torch.Tensor): The fk represented as Homogenous transformation matrix """ return self.rbdalgos.forward_kinematics( frame, base_transform, joint_positions ).array
[docs] def jacobian( self, frame: str, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the Jacobian relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position Returns: J (torch.Tensor): The Jacobian between the root and the frame """ return self.rbdalgos.jacobian(frame, base_transform, joint_positions).array
[docs] def bias_force( self, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, ) -> torch.Tensor: """Returns the bias force of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position base_velocity (torch.Tensor): The base velocity joint_velocities (torch.Tensor): The joints velocity Returns: h (torch.Tensor): the bias force """ gravity = self.g return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, gravity, ).array.squeeze()
[docs] def coriolis_term( self, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, ) -> torch.Tensor: """Returns the coriolis term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position base_velocity (torch.Tensor): The base velocity joint_velocities (torch.Tensor): The joints velocity Returns: C (torch.Tensor): the Coriolis term """ gravity = torch.zeros( (6,), dtype=base_transform.dtype, device=base_transform.device, ) return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, gravity, ).array.squeeze()
[docs] def gravity_term( self, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the gravity term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position Returns: G (jnp.array): the gravity term """ batch_size = base_transform.shape[:-2] base_velocity = torch.zeros( batch_size + (6,), dtype=base_transform.dtype, device=base_transform.device, ) joint_velocities = torch.zeros_like(joint_positions) return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, self.g, ).array.squeeze()
[docs] def CoM_position( self, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the CoM position Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position Returns: CoM (torch.Tensor): The CoM position """ return self.rbdalgos.CoM_position(base_transform, joint_positions).array
[docs] def CoM_jacobian( self, base_transform: torch.Tensor, joint_positions: torch.Tensor ) -> torch.Tensor: """Returns the CoM Jacobian Args: base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position Returns: Jcom (torch.Tensor): The CoM Jacobian """ return self.rbdalgos.CoM_jacobian(base_transform, joint_positions).array
[docs] def get_total_mass(self) -> float: """Returns the total mass of the robot Returns: mass: The total mass """ return self.rbdalgos.get_total_mass()
[docs] def aba( self, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, joint_torques: torch.Tensor, external_wrenches: dict[str, torch.Tensor] | None = None, ) -> torch.Tensor: """Featherstone Articulated-Body Algorithm (floating base, O(n)). Args: base_transform (torch.Tensor): The batch of homogenous transforms from base to world frame joint_positions (torch.Tensor): The batch of joints position base_velocity (torch.Tensor): The batch of base velocity joint_velocities (torch.Tensor): The batch of joint velocities joint_torques (torch.Tensor): The batch of joint torques external_wrenches (dict[str, torch.Tensor], optional): External wrenches applied to the robot. Defaults to None. Returns: torch.Tensor: The batch of base acceleration and the joint accelerations """ return self.rbdalgos.aba( base_transform, joint_positions, base_velocity, joint_velocities, joint_torques, self.g, external_wrenches, ).array.squeeze()